Path Connectivity of Idempotents on a Hilbert Space

نویسندگان

  • YAN-NI CHEN
  • HAI-YAN ZHANG
  • Joseph A. Ball
چکیده

Let P and Q be two idempotents on a Hilbert space. In 2005, J. Giol in [Segments of bounded linear idempotents on a Hilbert space, J. Funct. Anal. 229(2005) 405-423] had established that, if P +Q− I is invertible, then P and Q are homotopic with s̃(P,Q) ≤ 2. In this paper, we have given a necessary and sufficient condition that s̃(P,Q) ≤ 2, where s̃(P,Q) denotes the minimal number of segments required to connect not only from P to Q, but also from Q to P in the set of idempotents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-adjoint symmetry operators connected with the magnetic Heisenberg ring

In [1] we defined symmetry classes, commutation symmetries and symmetry operators in the Hilbert space H of the 1D spin-1/2 Heisenberg magnetic ring with N sites and investigated them by means of tools from the representation theory of symmetric groups SN such as decompositions of ideals of the group ring C[SN ], idempotents of C[SN ], discrete Fourier transforms of SN , Littlewood-Richardson p...

متن کامل

An extension theorem for finite positive measures on surfaces of finite‎ ‎dimensional unit balls in Hilbert spaces

A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...

متن کامل

A Note on Quadratic Maps for Hilbert Space Operators

In this paper, we introduce the notion of sesquilinear map on Β(H) . Based on this notion, we define the quadratic map, which is the generalization of positive linear map. With the help of this concept, we prove several well-known equality and inequality...  

متن کامل

extend numerical radius for adjointable operators on Hilbert C^* -modules

In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.

متن کامل

Discrete-Time Path Distributions on Hilbert Space

We construct a path distribution representing the kinetic part of the Feynman path integral at discrete times similar to that defined by Thomas [1], but on a Hilbert space of paths rather than a nuclear sequence space. We also consider different boundary conditions and show that the discrete-time Feynman path integral is well-defined for suitably smooth potentials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008